Accounting for relatedness in family-based association studies: application to Genetic Analysis Workshop 18 data
نویسندگان
چکیده
In the last few years, a bewildering variety of methods/software packages that use linear mixed models to account for sample relatedness on the basis of genome-wide genomic information have been proposed. We compared these approaches as implemented in the programs EMMAX, FaST-LMM, Gemma, and GenABEL (FASTA/GRAMMAR-Gamma) on the Genetic Analysis Workshop 18 data. All methods performed quite similarly and were successful in reducing the genomic control inflation factor to reasonable levels, particularly when the mean values of the observations were used, although more variation was observed when data from each time point were used individually. From a practical point of view, we conclude that it makes little difference to the results which method/software package is used, and the user can make the choice of package on the basis of personal taste or computational speed/convenience.
منابع مشابه
Adjustment of familial relatedness in association test for rare variants
High-throughput sequencing technology allows researchers to test associations between phenotypes and all the variants identified throughout the genome, and is especially useful for analyzing rare variants. However, the statistical power to identify phenotype-associated rare variants is very low with typical genome-wide association studies because of their low allele frequencies among unrelated ...
متن کاملComparison of multilevel modeling and the family-based association test for identifying genetic variants associated with systolic and diastolic blood pressure using Genetic Analysis Workshop 18 simulated data
Identifying genetic variants associated with complex diseases is an important task in genetic research. Although association studies based on unrelated individuals (ie, case-control genome-wide association studies) have successfully identified common single-nucleotide polymorphisms for many complex diseases, these studies are not so likely to identify rare genetic variants. In contrast, family-...
متن کاملAdjusting for population stratification and relatedness with sequencing data
To avoid inflated type I error and reduced power in genetic association studies, it is necessary to adjust properly for population stratification and known/unknown subject relatedness. It would be interesting to compare the performance of a principal component-based approach with a linear mixed model. Furthermore, with the availability of genome-wide sequencing data, the question of whether it ...
متن کاملTransmission and decorrelation methods for detecting rare variants using sequencing data from related individuals
BACKGROUND Advances in whole genome sequencing have enabled the investigation of rare variants, which could explain some of the missing heritability that genome-wide association studies are unable to detect. Most methods to detect associations with rare variants are developed for unrelated individuals; however, several methods exist that utilize family studies and could have better power to det...
متن کاملHierarchical linear modeling of longitudinal pedigree data for genetic association analysis
Genetic association analysis on complex phenotypes under a longitudinal design involving pedigrees encounters the problem of correlation within pedigrees, which could affect statistical assessment of the genetic effects. Approaches have been proposed to integrate kinship correlation into the mixed-effect models to explicitly model the genetic relationship. These have proved to be an efficient w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014